A Generalized Normal Mean Variance Mixture for Return Processes in Finance

نویسندگان

  • Elisa Luciano
  • Patrizia Semeraro
  • Stefania Di Gangi
چکیده

Time-changed Brownian motions are extensively applied as mathematical models for asset returns in Finance. Time change is interpreted as a switch to trade-related business time, different from calendar time. Time-changed Brownian motions can be generated by infinite divisible normal mixtures. The standard multivariate normal mean variance mixtures assume a common mixing variable. This corresponds to a multidimensional return process with a unique change of time for all assets under exam. The economic counterpart is uniqueness of trade or business time, which is not in line with empirical evidence. In this paper we propose a new multivariate definition of normal mean-variance mixtures with a flexible dependence structure, based on the economic intuition of both a common and an idiosyncratic component of business time. We analyze both the distribution and the related process. We use the above construction to introduce a multivariate generalized hyperbolic process with generalized hyperbolic margins. We conclude with a stock market example to show the ease of calibration of the model. JEL Classification (2008): C16, G12. Mathematics Subject Classification (2000): 60G51, 60E07.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tail Mean-Variance Model and Extended Efficient Frontier

In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...

متن کامل

Portfolio Performance Evaluation in a Modified Mean-Variance-Skewness Framework with Negative Data

   The present study is an attempt toward evaluating the performance of portfolios using mean-variance-skewness model with negative data. Mean-variance non-linear framework and mean-variance-skewness non- linear framework had been proposed based on Data Envelopment Analysis, which the variance of the assets had been used as an input to the DEA and expected return and skewness were the output. C...

متن کامل

Mixture of Normal Mean-Variance of Lindley Distributions

‎Abstract: In this paper, a new mixture modelling using the normal mean-variance mixture of Lindley (NMVL) distribution has been considered. The proposed model is heavy-tailed and multimodal and can be used in dealing with asymmetric data in various theoretic and applied problems. We present a feasible computationally analytical EM algorithm for computing the maximum likelihood estimates. T...

متن کامل

Dependency Models based on Generalized Gaussian Scale Mixtures and Normal Variance Mean Mixtures

We extend the Gaussian scale mixture model of dependent subspace source densities to include non-radially symmetric densities using Generalized Gaussian random variables linked by a common variance. We also introduce the modeling of skew using the Normal Variance-Mean mixture model. We give closed form expressions for likelihoods and parameter updates in the EM algorithm.

متن کامل

Lévy processes in Asset Pricing

The main empirical motivation of using Lévy processes in finance comes from fitting asset return distributions. Consider the daily (either continuous or simple) returns of S&P 500 index (SPX) from Jan 2, 1980 to Dec 31, 2005. We plot the histogram of normalized (mean zero and variance one) daily simple returns in Figure 1, along with the standard normal density function. The max and min (which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009